Produçao de celulose kraft a partir de misturas de madeiras de Eucalyptus saligna e Acacia mearnsii

MFN -0623 N CHAMADA:

TITULO: Produção de celulose kraft a partir de misturas de

madeiras de Eucalyptus saligna e Acacia mearnsii

AUTOR(ES): PETRIK, A.W.BUSNARDO, C.A.GONZAGA, J.V.MILANEZ, A.F.

EDICAO:

IDIOMA: português
ASSUNTO: 02. Celulose
TIPO: Congresso

EVENTO: Congresso Anual da ABCP, 17

PROMOTOR: ABTCP

CIDADE: São Paulo DATA: 19-23.11.1984

IMPRENTA: Sao Paulo, 1984, ABTCP

PAG/VOLUME: p.297-324, v.1

FONTE: Congresso Anual da ABCP, 17, 1984, São Paulo, v.1,

p.297-324

AUTOR ENTIDADE:

DESCRITOR: pastas kraft, eucalipto, Eucalyptus saligna

RESUMO:

PRODUÇÃO DE CELULOSE KRAFT A PARTIR DE MISTURAS DE MADEIRAS DE Eucalyptus saligna E Acacia mearnsii

Petrik, A.W. - CRQ 05300297 Busnardo, C.A. - CREA 3730-P Gonzaga, J.V. - CREA 78358-D Milanez, A.F. - CREA 6254-D

Riocell - Rio Grande Cia. de Celulose do Sul - Guaíba - Brasil

1. Introdução

Atualmente, tendo em vista a demanda de madeira para a produção de celulose, o gênero *Lucalyptus* tem se constituído em uma das principais fontes de matéria-prima. O sucesso alcançado pelas espécies tradicionalmente utilizadas é hoje uma realidade. No entanto, estudos recentes infor mam que no Brasil os recursos tradicionais para a produção de celulose não conseguirão provavelmente suprir a demanda nos próximos anos. Esta situação é verificada também a nível internacional, e tenderá a agravar-se quan do as reservas florestais se tornarem mais escassas, associado a uma elevação da demanda. Desta forma, é importante se pesquisar novas matérias-primas, a custos competitivos, e que forneçam opções para as necessidades de um mercado consumidor cada vez mais exigente.

Em conformidade com GONZAGA et alii (1982), a Acacia meannsii constitui-se na segunda principal essencia florestal plantada no Rio Gran de do Sul, perdendo em area apenas para o eucalipto. A cultura dessa especie e de fundamental importância para as indústrias de tanino, chapas e produção de celulose no estado. Entretanto, apesar da potencialidade da madeira de Acacia meanusii como matéria-prima para a produção de celulose, há uma carência de informações relativas à caracterização da qualidade de sua madeira e implicações tecnológicas da sua utilização. A possibilidade de realização de cozimentos industriais conjuntos de misturas de madeiras de Eucalyptus saligna e Acacia meanusii tem sido demonstrada com relativo sucesso.

Neste estudo, os autores verificaram a viabilidade de produção de celulose kraft a partir da utilização conjunta de madeiras de Eucalyptus saligna e Acacia mearnsii. Para tal, foram efetuados diversos tratamentos relativos a distintas composições de madeira, conforme segue: 100% E. saligna; 25% A. mearnsii / 75% E. saligna; 50% A. mearnsii / 50% E. sa ligna; 75% A. mearnsii / 25% E. saligna e 100% A. mearnsii, objetivando a verificação das características vantajosas de cada matéria-prima no produto final. Discussões detalhadas sobre a caracterização das madeiras e resultados obtidos quando do processo de deslignificação são também apresentados.

Trabalho apresentado no XVII Congresso Anual da ABCP - Semana do Papel, realizado em Sao Paulo - Brasil - de 19 a 23 de novembro de 1.984.

Material

O material utilizado para a realização do presente estudo constituiu-se inicialmente de toras de madeira de Eucalyptus saligna e Acacia mearusii, provenientes de plantios comerciais. A madeira de Eucalyptus sa ligna era proveniente de plantios proprios da Riocell - Rio Grande Cia. de Celulose do Sul, ao passo que a madeira de Acacia mearusii era proveniente de plantios de terceiros. Quando da operação de descarregamento, separava-se uma quantidade de toras, representativamente amostradas no ca minhão, julgada suficiente para a realização de todo o experimento. Para cada uma das toras amostradas foram retirados discos de madeira com espessura de 2 a 3 cm, em posições representativas, operação essa realizada por intermédio de uma motosserra. Estes discos foram transformados manual mente em cavacos, separando-se os nos e porções de madeira de reação, objetivando a homogeneidade de características. Demais informações relativas à caracterização das espécies utilizadas estão apresentadas a seguir:

•	Eucalyptus saligna	Acacia mearnsii
Procedência	Horto Florestal Terra Dura	Triunfo Florestal
Idade	9 anos	7 anos
Comprimento		
das toras	2,40 m	2,00 m

3. Metodologia e resultados

3.1. Composição química das madeiras

As determinações relativas à caracterização química das madeiras foram efetuadas a partir de subamostras representativas de cavacos, obtidas por processo de quarteamento. Uma quantidade suficiente foi tomada, transformada em pequenos palitos, e a seguir em serragem, e posteriormente classificada para a obtenção da fração 40/60. As análises foram efetua das através da utilização das metodologias TAPPI e SCAN, exceção feita ao teor de holocelulose, o qual foi efetuado por deslignificação com solução acidificada de clorito de sódio. Os respectivos valores médios obtidos para a composição química das madeiras estão apresentados no Quadro I.

QUADRO I - Valores médios para a composição química das madeiras de E. sa ligna e A. meannsii

ANĀLISES	E. saligna	A. mearnsii
Extrativos em:		
- ālcool-benzeno 1:2	1,29	2,10
- diclorometano	0,31	0,32
- agua fria	0,86	1,67
- agua quente	1,99	2,66
- NaOH 1% a quente	11,61	16,21
- NaOH 5% a frio	6,58	14,17
- NaOll 8% a frio	6,53	11,80
- NaOH 10% a frio	6,40	10,80
- NaOH 18% a frio	4,30	8,18
Teor de:		
- lignina	26, 56	18,81
- holocelulose	76,60	81,46
- pentosanas	14,12	20,42
- cinzas	0,10	0,16

3.2. Densidade básica e grau de compactação

A densidade básica foi efetuada em amostras de cavacos, utilizando-se o método do máximo teor de umidade, conforme metodologia relatada por FOELKEL et alii (1971). O grau de compactação, também denominado de densidade a granel, foi determinado pela utilização de recipientes cilindricos apropriados, de peso e volume conhecidos, expressando-se os resultados base seca em estufa. Os respectivos valores médios obtidos estão apresentados no Quadro II.

QUADRO II - Valores médios para densidade básica e grau de compactação

PARÂMETRO	E. saligna	A. mearnsii
Densidade básica, g/cm³	0,510	0,610
Grau de compactação, t/m^3	0,183	0,217

3.3. Determinação das características anatômicas

As determinações das características anatômicas das fibras e dos elementos de vaso foram efetuadas pela utilização das técnicas de microscopia e microprojeção, após coloração do material com safranina. O material utilizado para a maceração nítrico-acética a quente foi proveniente de subamostras representativas de cavacos. Para cada espécie, foram men suradas 200 fibras para comprimento, 150 para largura, diâmetro do lúmen e espessura da parede celular, e 50 elementos de vasos. Os resultados médios obtidos para as características anatômicas das fibras e elementos de vaso estão apresentados no Quadro III.

QUADRO III - Características dimensionais para as fibras e elementos de vaso para E. saligna e A. mearnsii

			F	1 BRA		VAS	os
PARÂMETRO	ESPÉCIE	Comprimento,	Lar- gura, µm	Diâme tro do lumen,	Espessu ra da pa rede,	Comprimento,	Lar- gura,
Média	E.saligna	1,057	21,18	13,99	3,60	0,333	0,180
	A.mearnsii	0,982	20,59	12,37	4,11	0,236	0,159
Desvio	E.saligna	0,161	3,54	3,29	0,93	0,119	0,058
padrão	A.mearnsii	0,211	3,50	3,58	0,90	0,063	0,046
Coeficien te de va- riação, %	E.saligna A.mearnsii	15,23 21,49	16,71 17,00	23,52 28,94	25,83 21,89	35,74 26,70	32,22 28,93
Maior	E.saligna	1,747	31,05	23,92	6,44	0,835	0,319
valor	A.mearnsii	1,528	31,05	23,46	7,02	0,346	0,313
Menor	E.saligna	0,725	13,34	7,13	1,61	0,153	0,082
valor	A.meannsii	0,445	14,03	5,52	1,96	0,099	0,055
Amplitude	E, saligna	1,022	17,71	16,79	4,83	0,682	0,237
	A, mearns i i	1,083	17,02	17,94	5,06	0,247	0,258

A seguir, com base nas dimensões anatômicas individuais das fibras, determinaram-se as seguintes relações: Indice de enfeltramento, coeficiente de flexibilidade, fração parede, Indice de Runkel e relação comprimento da fibra/espessura da parede. No Quadro IV encontram-se os valores médios obtidos para as relações fundamentais das fibras. As distribuições percentuais relativas as fibras e elementos de vasos dentro das classes pre-estabelecidas, encontram-se apresentadas nas Figuras 1 a 12.

QUADRO IV - Relações fundamentais entre as dimensões das fibras de E. saligna e A. mearnsii

PARÂMETRO	E. saligna	A. mearnsii
Indice de enfeltramento	49,91	47,69
Coeficiente de flexibilidade, %	66,05	60,07
Fração parede, %	33,99	39,92
Indice de Runkel	0,514	0,664
Relação comprimento/espessura	293,6	238,9

3.4. Deslignificação

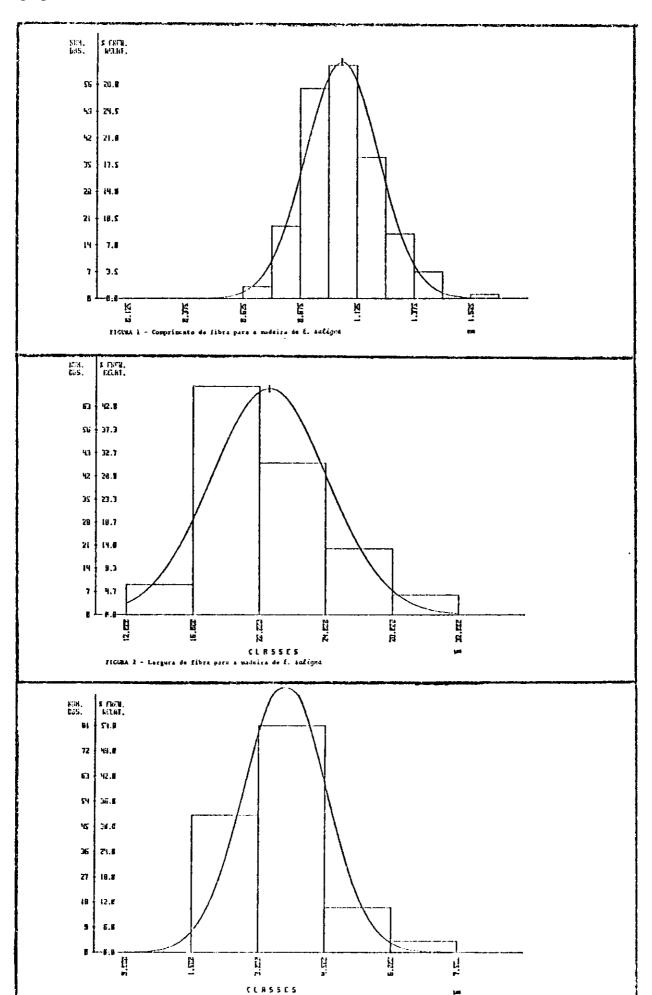
O processo utilizado para a deslignificação dos cavacos foi o kraft. Os tratamentos efetuados envolveram distintas composições de madeira, conforme segue:

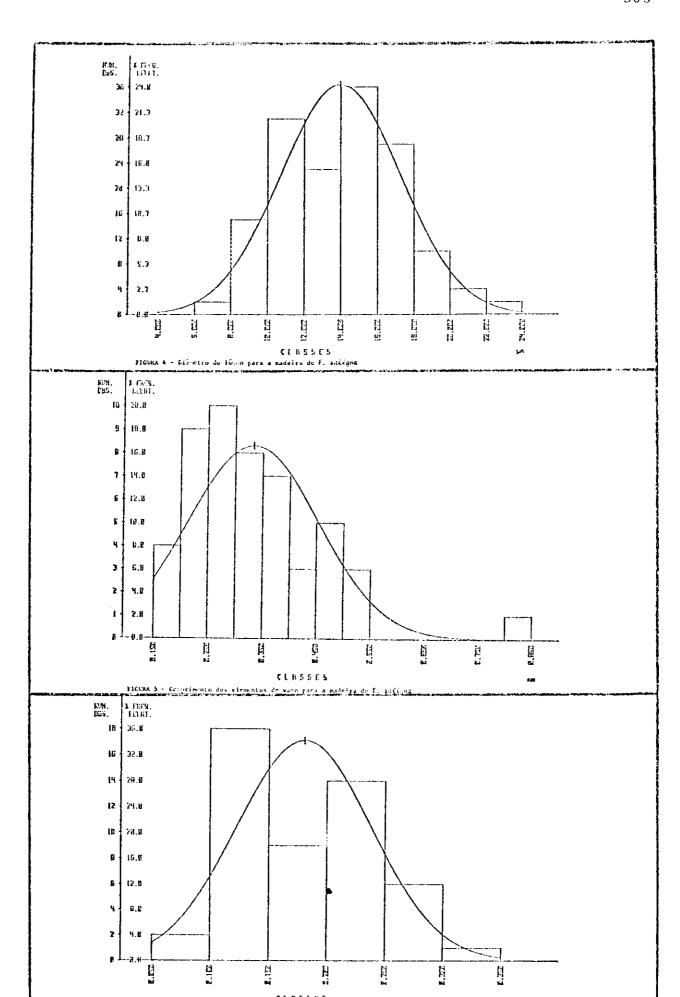
- 100% de madeira de E. saligna
- 25% de madeira de A. meannsii + 75% de madeira de E. saligna
- 50% de madeira de A. mearnsii + 50% de madeira de E. saligna
- 75% de madeira de A. mearnsii + 25% de madeira de E. saligna
- 100% de madeira de A. mearnsii

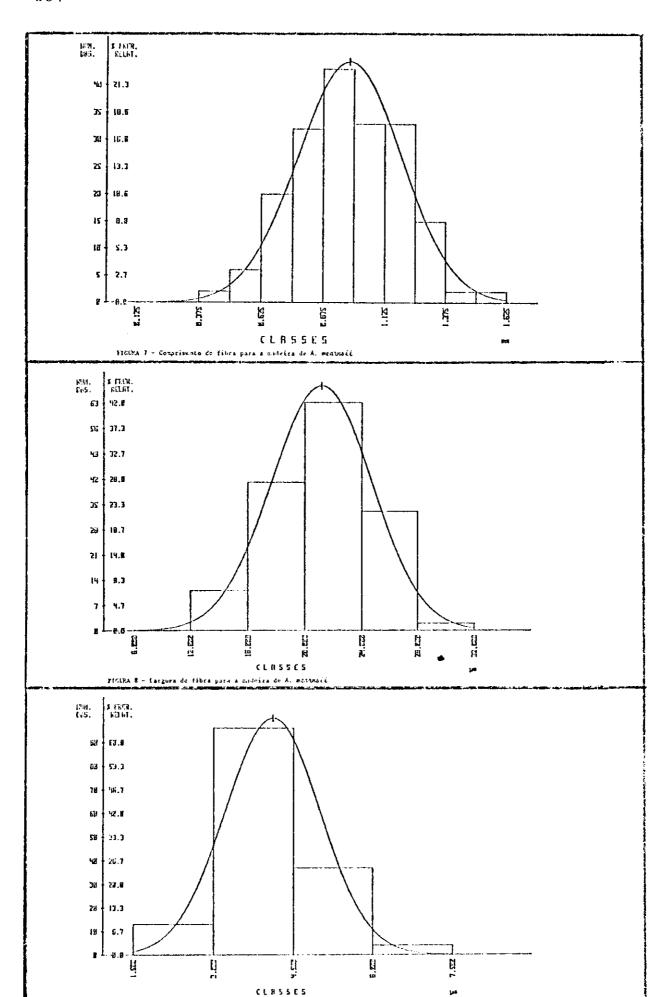
A quantidade de madeira deslignificada em cada tratamento foi a equivalente a 2000g s.e.. Para os tratamentos que envolveram distintas com posições de madeira, a mistura foi efetuada base peso. Para cada tratamento foram realizadas duas repetições. Os cozimentos foram efetuados em digestor rotativo Regmed, capacidade de 20 litros, 2 a 3 hpm, e aquecido eletricamente. As condições adotadas nos cozimentos foram mantidas constantes para todos os tratamentos, e selecionadas após cozimentos experimentais individuais para as madeiras de E. saligna e A. meansia, objetivando-se um número kappa na faixa de 16 a 18. As condições utilizadas para os tratamentos efetuados foram as seguintes:

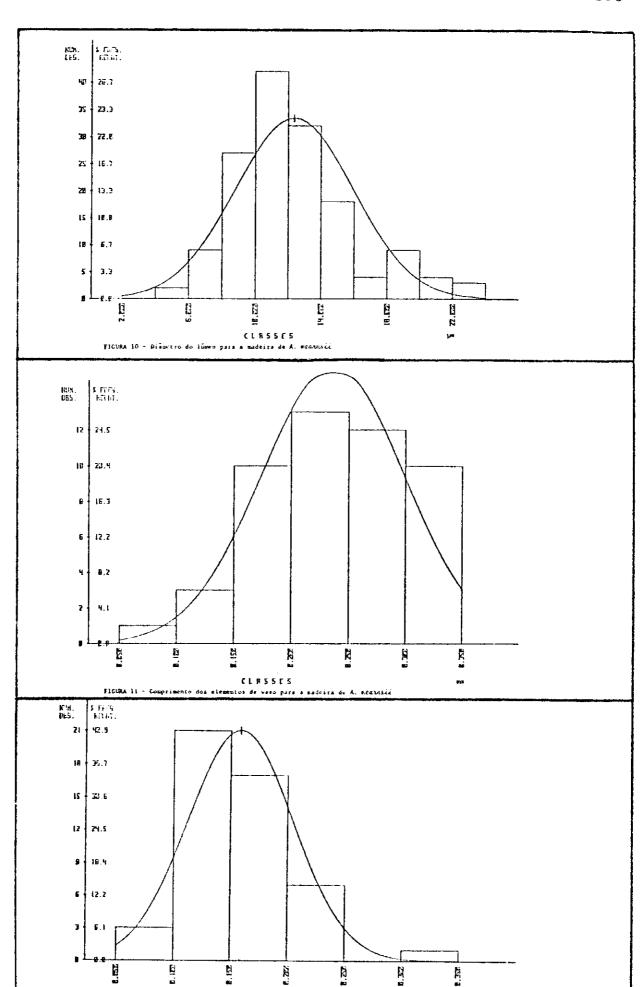
- Alcali ativo: 15% como Na_2O , base madeira s.e.,
- Sulfididade: 20%,
- Temperatura maxima: 170°C,
- Tempo até temperatura máxima: 90 minutos,
- Tempo a temperatura maxima: 45 minutos,
- Relação licor-madeira: 4/1.

Ao final do período de cozimento, o digestor era despressurizado, sendo o material recolhido sobre uma tela de malha fina. Em adição, retirava-se logo antes uma amostra do licor residual para a realização das análises apresentadas no Quadro V. A fração solida resultante de cada tratamento era passada através de um refinador de discos, sendo a seguir perfeitamente lavada e depurada. As polpas tiveram as suas propriedades avaliadas pela utilização das normas TAPPI e SCAN, cujos resultados médios estão sumarizados no Quadro VI. As relações alvura/kappa e viscosidade/kappa foram estabelecidas e calculadas a partir dos respectivos dados, objetivando afetuar comparações entre os tratamentos. Os tratamentos de major signados estados entre comparações entre os tratamentos de major signados estados entre comparações entre os tratamentos de major signados estados entre comparações entre os tratamentos de major signados estados estados entre comparações entre os tratamentos de major signados entre comparações entre os tratamentos de major signados estados estados entre comparações entre os tratamentos de major signados estados estados entre comparações entre os tratamentos de major signados entre comparações entre os comparaciones entre comparações en


nificância devem apresentar os mais altos valores para as relações viscosi dade/kappa e alvura/kappa. A partir dos dados de rendimento do processo e valores médios para densidade básica, procedeu-se à determinações dos respectivos consumos específicos de madeira para produção de uma tonelada de celulose 5.0., os quais encontram-se apresentadas no Quadro VII.


3.5. Ensaios físico-mecânicos e óticos

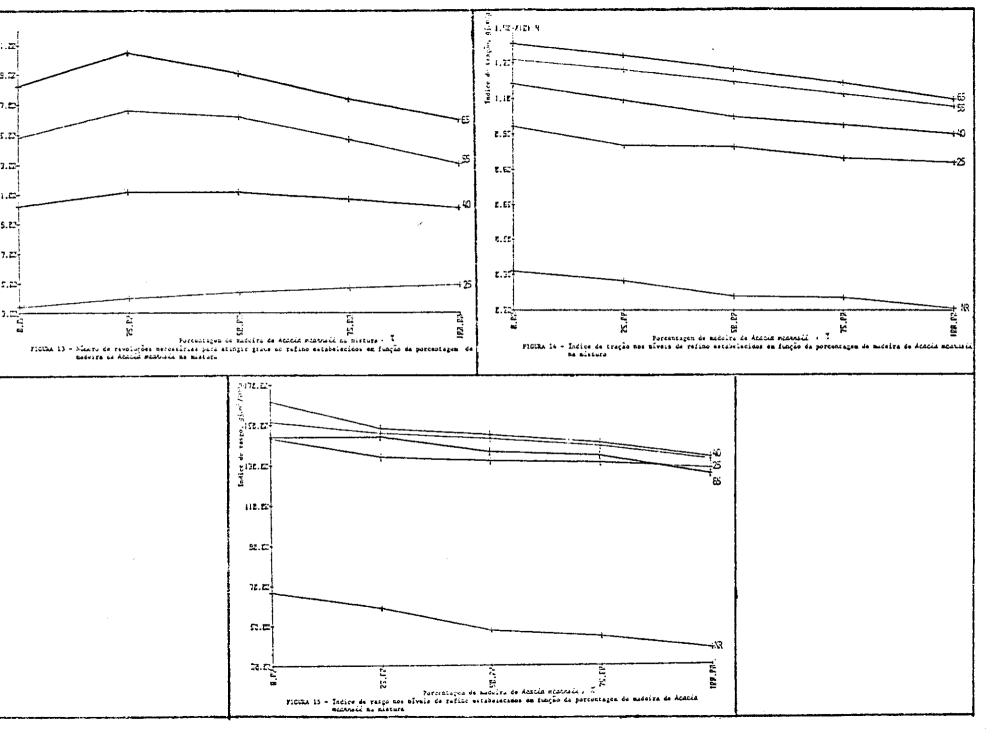

As polpas provenientes dos tratamentos efetuados foram refinadas em um moinho centrífugo Jokro-Milhle, 150 tpm, utilizando-se agua deionizada e 16 gramas s.e. por panela, a uma consistência de 6%. O grau de refino foi avaliado através da determinação do grau Schopper-Riegler, em conformidade com a metodologia ABCP, e os resultados dos refinos individuais foram graficamente interpolados para 25,40,55 e 65°SR. A continuidade do refino para atingir o nivel de 65°SR foi efetuada objetivando atingir o ponto de pergamentação das fibras. As folhas para os ensaios físico-mecânicos e oti cos, com gramatura aproximada de $60g/m^2$, foram formadas em aparelho formador de folhas tipo TAPPI, e acondicionadas em ambiente climatizado, nas con dições de 50±2% de umidade relativa e temperatura de 23±2°C (norma TAPPI). A alvura das polpas foi determinada segundo a norma SCAN (% ISO, β d/θ). Os resultados medios das propriedades físico-mecânicas e óticas das polpas en saiadas nos graus de refino pre-estabelecidos, estão apresentados no Quadro VIII e os gráficos relativos aos parâmetros julgados de maior signifi cância estão apresentados nas Figuras 13 a 17.

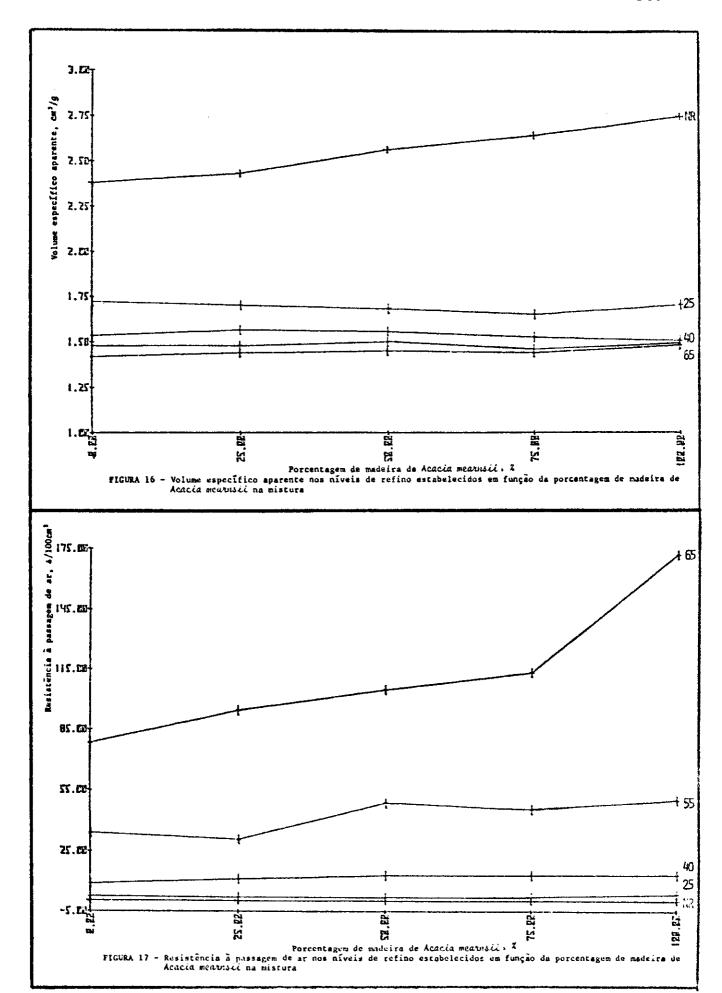

QUADRO V - Valores médios para os licores residuais

PARÂMETRO			COMPOSIÇ	ÃO	·
PARATETRO	100%s	25%A/75%S	50%A/50%S	75%A/25%S	100%A
рН	12,7	12,8	12,7	12,8	12,7
Alcali ativo, g/ℓ como Na_2O	16,60	15,83	15,66	14,72	13,62
Alcali total, g/ℓ como Na_2O	32,10	30,21	30,37	29,27	27,40
Na_2S , g/ℓ como Na_2O	4,85	5,20	3,99	4,96	4,20
$NaOH$, g/ℓ como Na_2O	11,75	10,63	11,67	9,76	9,42
Na ₂ CO ₃ , g/l como Na ₂ O	15,50	14,38	14,71	14,55	13,78
Teor de sólidos, % base material úmido,	16,83	16,34	16,35	16,40	15,84
Teor de matéria orgânica, % base material seco	63,97	64,62	63,67	63,93	62,32
Teor de matéria orgânica, % base material seco	36,03	35,38	36,33	36,07	37,68

QUADRO VI - Valores médios para as características das polpas obtidas

		CO	MPOSIÇÃO		
PARÂMETRO	100%s	25%A/75%S	50%A/50%S	75%A/25%S	100%A
Fator H	806,4	806,3	804,8	808,9	804,3
Numero kappa	16,0	16,5	16,8	17,1	17,5
Viscosidade intrīnseca, cm³/g	1056	1160	1114	1131	1226
Rendimento bruto, %	50,74	51,75	52,04	52,92	54,04
Rendimento depurado, %	50,66	51,64	51,81	52,70	53,64
Teor de rejeitos, %	0,08	0,10	0,24	0,22	0,41
Solubilidade em NaOH 5%,%	9,3	11,1	12,3	13,8	15,2
Alvura, %	40,1	41,0	40,7	39,2	38,4
Relação alvura/kappa	2,51	2,48	2,42	2,29	2,19
Relação viscosidade/kappa	66,00	70,30	66,31	66,14	70,06
Solubilidade em:					
- ālcool-benzeno 1:2	0,27	0,47	0,19	0,25	0,37
- NaOH 1% a quente	1,14	1,73	1,31	1,61	1,43
Teor de:					
- lignina	1,50	1,14	1,48	1,70	1,78
- holocelulose	98,39	98,55	98,79	98,46	98,28
- pentosanas	14,43	15,44	16,58	18,26	19,24
- cinzas	0,39	0,38	0,39	0,39	0,39


QUADRO VII - Valores médios para consumo específico de madeira para produção de uma tonelada de celulose depurada


. 	E. sa	Ligna	A. mearnsii		
COMPOSIÇÃO	m³sõlido/ ts.e.	m³estēreo/ t s.e.	m³sõlido/ ts.e.	m³estéreo, t s.e.	
100%s	3,86	5,21	-	-	
25%A/75%S	2,85	3,85	0,80	1,27	
50%A/50%S	1,90	2,57	1,59	2,53	
75%A/25%S	0,93	1,26	2,34	3,71	
100%A	-		3,06	4,86	

Acacia measursii: 1st = $0.63 \text{ m}^3 \text{ solido}$

Eucalyptus saligna: 1s $t = 0,74 \text{ m}^3 \text{ solido}$

s	-n %	40044	3 0 0	7 0 0 8	1 9 6 6 1	4 6 6 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
cido	Alvu- ra,% ISO	40, 40, 40, 39,	35, 34, 33, 32,	29, 32, 32, 31,	26, 25, 31, 30,	29,99
liveis estabelecidos	Coeficien te de dis persão de luz, m²/kg	46,0 47,6 43,0 43,4 46,3	33,8 29,3 34,5 29,8	27,9 29,9 30,4 26,5 28,6	27,3 28,6 28,6 26,5 28,0	27,2 26,8 27,2 27,6 26,8
ticas nos nīv	Resistên- cia a pas sagem de ar, 4/100cm³	0,00 4,00 6,00 6,00	2,3 2,0 1,8 2,0 3,6	8,6 10,8 12,5 12,6	33,7 30,5 48,5 45,5 50,0	78,1 94,5 105,0 113,8 172,5
físico-mecânicas e ó	Volume es- pecífico <u>a</u> parente, cm ³ /g	2,38 2,43 2,56 2,64 2,74	1,72 1,70 1,68 1,65 1,65	1,53 1,56 1,55 1,52 1,50	1,48 1,48 1,50 1,46 1,49	1,42 1,44 1,45 1,45 1,44
	Indice de rasgo, g ₁ , m ² /100g	66,6 58,8 47,6 44,3 38,4	143,2 134,1 132,0 130,9 127,8	161,2 147,9 144,5 140,4 133,2	151,3 145,7 142,8 139,0 132,2	144,0 144,1 136,5 134,4 125,0
resistências	Indice de estouro, $g \xi/cm^2/g/m^2$	12,8 9,0 7,8 7,4 5,8	64,4 55,0 54,8 53,5	77,4 75,0 68,5 70,2 72,6	68,2 82,2 82,0 83,2 78,0	96,1 89,4 85,0 88,2 85,0
edades de	Alonga- mento, %	1,5 1,0 1,3 1,3	2,8 2,5 3,0 2,6	ი ი ი ი ი ი 4 2 6 6 6	6,6,4 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	4,7 4,4 3,8 3,7
a as propri	Indice de tração, g6.m/g	3651 3236 2594 2541 2093	9820 9025 8975 8500 8325	11615 10925 10230 9895 9528	12630 12200 11700 11200 10675	13325 12825 12250 11675 11010
Valores médios para as propried	Número de revoluções, x10³	00000	3,4 4,0 4,4 4,7	10,2 11,2 11,2 10,7	14,8 16,6 16,2 14,7 13,1	18,2 20,5 19,1 17,4 16,0
4	Composíção	100%S 25%A/75%S 50%A/50%S 75%A/25%S 100%A	100%S 25%A/75%S 50%A/50%S 75%A/25%S 100%A	100%S 25%A/75%S 50%A/50%S 75%A/25%S 100%A	100%S 25%A/75%S 50%A/50%S 75%A/25%S 100%A	100ZS 25ZA/75ZS 50ZA/50ZS 75ZA/25ZS 100ZA
QUADRO VIII	SR	16 15 15 14,5	25	07	55	65

3.6. Modelagem matemática

Através da análise de regressão linear simples, buscou-se conhecer a influência das demais variaveis quando correlacionadas com a elevação da taxa de participação de madeira de Acacia mearnsii na mistura. variaveis selecionadas foram estabelecidas a partir de parametros de caraç terização das polpas, parâmetros relativos à caracterização física e quími ca do licor residual, bem como propriedades de resistências físico-mecânicas e óticas para as polpas nas formas não-refinada e refinada nos níveis 25,40,55 e 65°SR. Para esta fase da pesquisa, manipularam-se 670 dados, cor respondentes a 67 variaveis, e 10 observações por variavel. A significancia das correlações lineares entre os pares de variáveis foi estabelecida pelos respectivos coeficientes de correlação(h), adotando-se em todas as si tuações do presente estudo um nível mínimo de significância de 95% de probabilidade. No Quadro IX estão apresentadas as variáveis correlacionadas e suas respectivas medidas de dispersão. Os respectivos coeficientes de correlação nos níveis de significância adotados, bem como os respectivos coeficientes angulares e lineares estão apresentados no Quadro X. Em cada cor relação entre pares de variáveis, a variável de menor grandeza numérica re fere-se à variavel independente (X_i) , e a variavel de maior grandeza numérica refere-se à variavel dependente (Y;). A equação de regressão e da for ma $Y_{\ell} = A_1 + B_1 X_{\ell}$, e somente as inter-relações significativas foram listadas.

QUADRO IX - Resultados medios e medidas de dispersão para as variáveis cor relacionadas

	VARIÁVEL		S	CV
1. Porcentagem relativa de madeira de Acacia mearnsii na mistura		50.00	27 27	7/ 5/
2.	Fator H	50,00 806,11	37,27 3,89	74,54 0,48
3.	Número kappa	16,74	0,57	3,41
4.	Viscosidade intrinseca	1137,50	66,10	5,81
5.	Solubilidade em solução de NaOH 5%	12,35	2,18	17,65
6.	Alvura	39,89	1,05	2,63
7.	Rendimento bruto	52,30	1,22	2,33
8.	Rendimento depurado	52,09	1,12	2,15
9.	Teor de rejeitos	0,21	0,13	61,90
10.	Alcali ativo do licor residual	15,28	1,12	7,33
11.	Alcali total do licor residual	29,87	1,77	5,93
12.	Concentração de Na ₂ S	4,64	1,05	22,63
	рН	12,72	0,14	1,10
14.	Teor de sólidos	16,35	0,40	2,45
15.	Teor de matéria orgânica	63,70	0,95	1,49
16.	Teor de matéria inorgânica	36,38	1,05	2,89
17.	Extrativos da polpa em álcool-benzeno 1:2	0,31	0,11	35,48
18.	Solubilidade da polpa em solução de NaOH 1% a quente	1,44	0,37	25,69

12,79

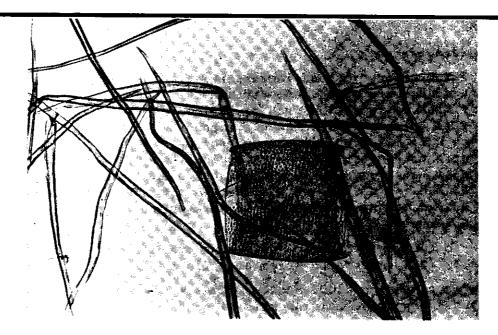
10.07

78 74

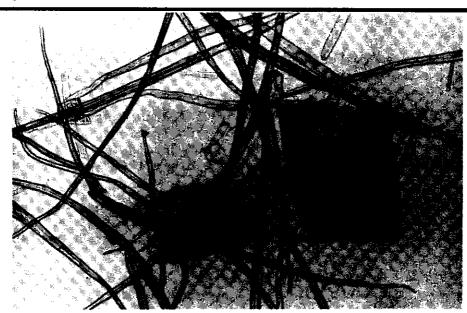
19. Teor de lignina da polpa	1,52	0,36	23,68
20. Teor de holocelulose da polpa	98,58	0,37	0,38
21. Teor de pentosanas da polpa	16,79	1,87	11,14
22. Teor de cinzas da polpa	0,38	0,01	2,63
Polpa não refinada			
23. Grau Schopper Riegler	14,90	0,88	5,91
24. Indice de tração	2822,90	716,69	25,39
25. Alongamento	1,22	0,25	20,49
26. Indice de estouro	8,55	2,73	31,93
27. Indice de rasgo	51,11	11,48	22,46
28. Volume específico aparente	2,55	0,15	5,88
29. Resistência à passagem de ar	0,33	0,13	36,36
30. Coeficiente de dispersão de luz	45,26	2,17	4,79
31. Alvura	39,06	1,71	4,38
	37,00	±,/±	,,,,,
Nível de refino 25°SR			
32. Número de revoluções	4,27	0,58	13,58
33. Índice de tração	8929,00	554,35	6,21
34. Alongamento	2,63	0,29	11,03
35. Índice de estouro	56,23	5,60	9,96
36. Indice de rasgo	133,59	5,78	4,33
37. Volume específico aparente			
38. Resistência à passagem de ar	2,96	2,55	86,15
39. Coeficiente de dispersão de luz	31,37	2,84	9,05
40. Alvura	33,70	1,20	3,56
Nivel de refino 40°SR			
41. Número de revoluções	10,69	0,74	6,92
42. Í ndice de tração	10438,60	809,50	7,75
43. Alongamento	3,41	0,19	5,57
44. Indice de estouro	72,74	4,77	6,56
45. Indice de rasgo	145,45	10,08	6,93
46. Volume específico aparente	1,53	0,04	2,61
47. Resistência à passagem de ar	11,48	2,02	17,60
48. Coeficiente de dispersão de luz	28,65	2,13	7,43
49. Alvura	31,21	1,79	5,74
Nivel de refino 55°SR			
50. Número de revoluções	15,10	1,45	9,60
51. Îndice de tração	11681,00		6,69
52. Alongamento	3,80	0,22	5,79
Ja. Hongamento	70 71	10.07	12 79

54. Indice de rasgo	142,21	7,40	5,20
55. Volume específico aparente	1,48	0,03	2,03
56. Resistência à passagem de ar	44,64	7,50	16,80
57. Coeficiente de dispersão de luz	27,79	1,26	4,53
58. Alvura	28,89	4,46	15,44
Nivel de refino 65°SR			
59. Número de revoluções	18,23	1,77	9,71
60. Índice de tração	12217,00	893,12	7,31
61. Alongamento	4,02	0,32	0,80
62. Índice de estouro	88,74	6,64	7,48
63. Índice de rasgo	136,80	8,60	6,29
64. Volume específico aparente	1,45	0,03	2,07
65. Resistência à passagem de ar	112,77	38,46	34,10
66. Coeficiente de dispersão de luz	27,13	1,07	3,94
67. Alvura	30,22	0,63	2,08

QUADRO X - Coeficientes de correlação, coeficientes angulares e lineares e valores médios para os pares de variáveis significativamente cor relacionados


r	X	Ÿ	B1	A1	VAR	N SIG
- 0.961192192	50.0000	16.7400		16.010000000	-13-	05
0.704733135	50.0000	1137.5000	1,250000000	1075.000000000	i 4	
0.935257205	50.0000	12.3500	0.058200000	9.440000000	1 5	C5 -
-0.755257069	— -50,თბი—	39.8300	0.021200000	40.950000000	-16-	
0.952012474	50.0000	52.3000	0.031195000	50,741000000	1 7	05
0.937457001	50.0000	52.0310	0.028010000	50.639000000	1 8	05
~ 0. 903164369 ~ ~~	5 0.0000	c.2000	0.003140000-	0.0520000	19	05
-0.014420393	50,0000	15.2830	-0.023260000	16.696000000	1 10	05
-0.869261003	50.0000	29.8690	-0.041330000	31.938000000	1 11	1
₩0.72009£4/3 ——	——50.000a—	 16.3450	0.607710000	16.755000000	-1 14-	
0.630257149	50.6000	36.5830	0.019240000	35.421000000	1 16	j
0.909351552	50.0000	16.7370	0.019636000	14,303000000	1 21	05
-0.531005225	~~ ട്രൂധാ ര~~	14.5000	-0.016000000-	15.700000000	-1-23-	
-0.792577499	50.0000	2822.9000	-15.242000000	3595.000000000	1 24	1
-0.855592601	50.0000	8,5500	-0.053465000	11.720000000	1 26	•
-0.920713613	50.ccco	51,1100		65.290000000	1 27-	05 -
0.943314222	50.0000	2.5490	0.003740000	2.562000000	1 23	05
-0.707105731	50,0000	0.3300	-0.002260000	0.440000000	1 29	
0.915765361	50.0000	4.2700	0.014322665	3.530000000	~i 52~	- 05
-0.945232352	50,0000	8929.0000	-14.050000000	9632.0000000000	1 33	05
-0.879937938	50.0000	133,5900	-0.136400000	140.410000000	1 36	.1
-0.910951554	50.0000	33.7600	-0.039.00000	35.170000000	i-4ŏ	- 05
-0.956031164	50,0000	10430,6000	-29.316000000	11479,4000000000	1 42	ÕŠ
-0.953955116	50,0000	145.4500	-0.25300000	159.140000000	1 45	05
0.764926337	50.0000	11.1300	0.041400000	9.410000000	1 47 ~	
-0.936422318	50,0000	11631.0000	-19.640000000	12665.0000000000	1 51	05
-0.902999011	50.0000	142,2100	-0.179200000	151.170000000	1 54	05
0.613145917	50.0000	44.6100	0.130100000	30.120000000	~i 56°	
-0.05:740303	50.0000	12217.0000	-23.120000000	13373.000000000	1 60	05
-0.324574303	50,0000	136,8200	-0.190200000	146.310000000	1 63	1
0.806329303	50,0000	112.7700	0.832200000	71.160000000	1 65	

N SIG = nīvel de significância (5 = 5%; 1 = 1%; .1 = 0,1% e 05=0,05%)


3.7. Fotomicrografias

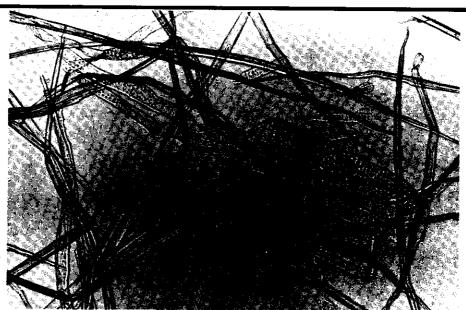
Foram confeccionadas lâminas relativas às polpas obtidas nos dis tintos tratamentos efetuados, objetivando verificar as alterações morfológicas das fibras em função do grau de refino e composição de madeira. As fo tomicrografias foram obtidas pela utilização de um sistema de câmera fotomicrografica PM-10-A, acoplada a um microscópio Olympus modelo BIB. As microfotos correspondentes às composições 100% Eucalyptus saligna e 100% Acacia mearnsii, nos graus de refino estabelecidos, e as referentes às composições 25% Eucalyptus saligna /75% Acacia mearnsii e 75% Eucalyptus saligna/25% Acacia mearnsii encontram-se apresentadas a seguir e permitem as seguintes observações:

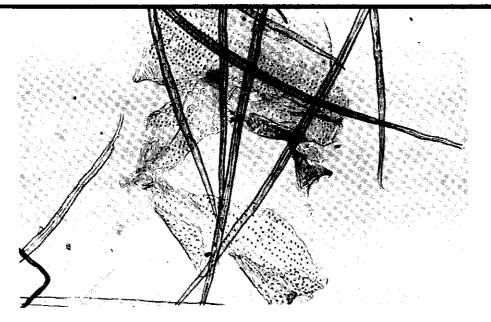
- o comprimento médio das fibras era maior para a composição 100% Eucalyptus saligna, mostrando serem suas fibras mais resistentes ao corte,
- a composição 100% Acacia mearusii apresentava valores médios para espessura da parede celular mais elevados,
- a composição 100% Acacia meannsii apresentava uma maior quantidade de vasos, células de parênquima e fibrotraqueídeos,
- as dimensões dos elementos de vaso eram menores para as polpas de Acacia mearnsii,
- para as composições de madeira analisadas, a observância de des fibrilações, mesmo a níveis de refino mais elevados, era de difícil visua-lização,
- para a composição global 100% Acacia mearnsii, observava-se uma destruição dos elementos de vaso logo no início do refino, já ao nível 25°SR, enquanto que para a composição 100% Eucalyptus saligna esses elementos permanecem praticamente intactos até o nível 40°SR,
- para a composição 100% Eucalyptus saligna, era bastante visível um aumento de flexibilidade e relativamente precoce colapso da estrutura fibrilar das fibras, contribuindo para maiores áreas de contato ribra a fibra, o que se traduz pela elevação das propriedades de resistências físíco-mecânicas,
- para ambas as composições analisadas, não ocorria diminuíção apreciável do comprimento das fibras por ação de corte.

Composição: Acacia meatrisii - Não refinada - Aumento: 108,2 x

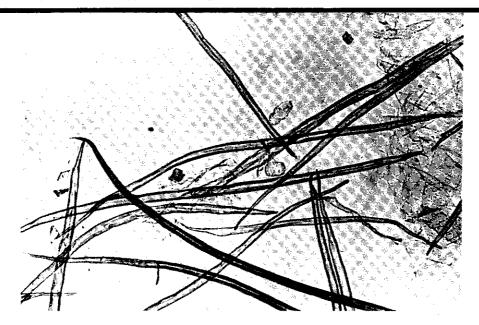


Composição: Acacia mearnsii - 25°SR - Aumento: 108,2 x



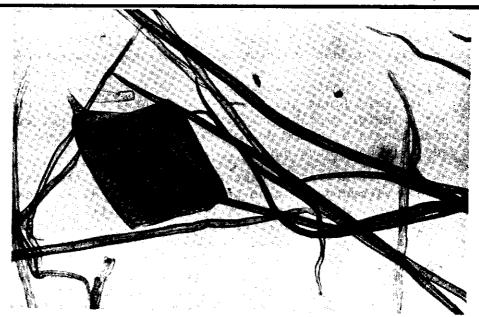


Composição: Acacia mearnsii - 55°SR - Aumento: 108,2 x

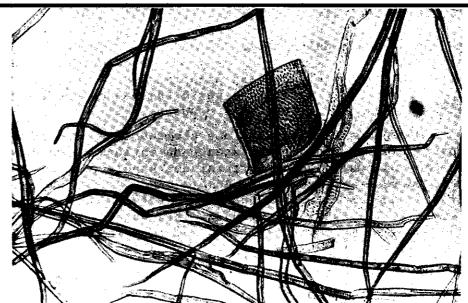


Composição: Acacia mearnsii - 65° SR - Aumento: $108,2 \times$

Composição: Eucalyptus saligna - 25°SR - Aumento: 108,2 x



Composição: Eucalyptus saligna - 40°SR - Aumento: 108,2 x



Composição: Eucalyptus saligna - 65°SR - Aumento: 108,2 x

Composição: 75% Saligna + 25% Acacia - Não refinada - Aumento: 108,2 x

4. Discussão dos resultados

As analises químicas efetuadas para caracterização das especies florestais utilizadas no presente experimento, evidenciaram diferenças bas tante acentuadas. A madeira de A. meannsii se caracterizou por apresentar teores de extrativos mais elevados quando comparados aos correspondentes da madeira de E. saligna, proveniente de povoamentos de maior idade. A madeira de A. mearnsii e rica em hemiceluloses, conforme pode ser observado pelos elevados teores obtidos para pentosanas e solubilidades em soluções de NaOH 1% a quente, e soluções de NaOH nas concentrações de 5,8,10 e 18% frio. Estes elevados teores, embora pudessem vir a se constituir em desvan tagem quando da utilização industrial da madeira de acácia, tendo em vista o fato de contribuirem para um decrescimo no rendimento, são contrabalanceados pelos mais baixos teores de lignina e em consequência, teores mais elevados de holocelulose. Teores de cinzas ligeiramente mais elevados foram observados para a madeira de A. mearnsii, os quais não deverão ocasionar problemas durante o processo de recuperação do licor negro. De uma maneira geral, os dados obtidos estão concordantes com os observados por GON ZAGA et alii (1982), e MARTINS et alii (1983).

Relativamente à densidade básica, a madeira de Acacia mearnsii a presentou valores mais elevados que a correspondente de madeira de Eucalyp tus saligna. A madeira de acacia, tendo em vista o fato de apresentar valo res mais elevados também para a densidade a granel, deverá resultar em maio res cargas do digestor por unidade de volume, com consequente elevação da produção. No entanto, em situações industriais, certas restrições são comu mente encontradas. Em conformidade com FOELKEL(1982), as toras de madeira de acacia, sendo mais finas que as correspondentes de eucalipto, são responsáveis por um maior empilhamento de toras de madeira por estereo, reduzindo em consequência o volume de madeira sólida por estereo, fato esse con trabalanceado pela densidade básica mais elevada.

Os dados relativos às dimensões das características das fibras e dos elementos de vaso para as madeiras de A. mearnsii e E. sa ligna são comparaveis aos citados por GONZAGA et alii (1982) e BUSNARDO et alii(1982), pois situam-se dentro da faixa dos normalmente encontrados para as espécies nas faixas de idade estudadas. Valores mais elevados comprimento de fibra, largura de fibra e diâmetro do lumen foram observados para o Eucalyptus saligna, os quais podem ser atribuidos a maior idade do povoamento. As fibras de madeira de Acacia meaunsii se caracterizaram por apresentarem fibras de paredes mais espessas. Esta característica, embora desejavel para o desenvolvimento das propriedades de resistência, nac é significativa o suficiente para que a mesma possa ser considerada como u ma característica exclusiva. De uma maneira geral, a dispersão dos dados a natômicos, conforme pode ser visualizado no Quadro III e Figuras 1 a 12, é mais acentuada para a madeira de Acacia mearnsii, indicando ainda que duas espécies são susceptíveis a um programa de melhoramento genético florestal, objetivando a otimização das propriedades de resistências físicomecânicas e óticas. Neste parecer, é perfeitamente possível a obtenção de fibras de E. saligna com paredes mais espessas.

As dimensões e quantidade dos elementos de vaso se revestem de grande importância, pois acarretam acentuada influência na densidade da ma deira, bem como na qualidade superficial dos papéis destinados à impressão. Os elementos de vaso da madeira de Acacia mearnsii são em geral mais curtos e estreitos que os correspondentes de Eucalyptus saligna, embora observações visuais em lâminas confeccionadas para as duas espécies indiquem que para a madeira de A. mearnsii os mesmos são em maior quantidade.

As relações entre as dimensões fundamentais das fibras, conforme pode ser observado no Quadro IV, indicam que as fibras de Eucalyptus salig na se caracterizam por apresentarem valores mais elevados para índice de enfeltramento, coeficiente de flexibilidade e relação comprimento/espessura. Estas relações têm tido atualmente uma importância cada vez maior nas explicações relativas às propriedades de resistências físico-mecânicas das folhas produzidas. Pelos dados obtidos, pode-se assumir que as folhas provenientes de madeira de E. saligna deverão apresentar maiores valores para resistência à tração, arrebentamento e alongamento, ao passo que as fibras de madeira de Á. mearusia, devido ao fato de apresentarem menores coeficientes de flexibilidade e maiores valores para fração parede, deverão ser mais rígidas, acarretando em consequência a formação de folhas mais porosas e com um maior volume específico. Entretanto, estas observações não po derão ser generalizadas, pois dependerão da maneira como as fibras se comportam durante o desenrolar do refino.

Os resultados apresentados no Quadro V e relativos à análise dos licores residuais, mostram que o pH não é praticamente alterado pela modificação na composição da madeira. O álcali ativo residual é decrescido com a elevação da taxa relativa de madeira de Acacia measursic na mistura, possivelmente explicado pelo teor mais elevado de xilanas apresentado pela madeira de acácia, fator esse que contribui para um maior consumo de álcali em reações de degradação e desacetilação. De acordo com FOELKEL et alii (1980), a madeira de acácia mostra um comportamento diferenciado frente as soluções alcalinas de NaOH. A madeira é parcialmente solubilizada na faixa de concentração de 30 a $70g/\ell$, devendo perder mais hemiceluloses no início do processo de cozimento, com consequente maior consumo de álcali nessa fa se. Os dados obtidos mostram uma tendência de diminuição das concentrações de NaOH, Na2S e álcali total quando da elevação da taxa relativa de ma deira de acácia, sendo que as pequenas discrepâncias observadas podem ser atribuídas à variabilidade natural do sistema licor de cozimento/madeira.

O teor de sólidos mostra uma correlação negativa com o rendimento do processo, sendo decrescido com a elevação da porcentagem de Acacia mearusia na mistura. O teor de matéria inorgânica é aumentado, o que provavelmente contribuira para a obtenção de menores valores de poder calorífico quando da operação de queima para geração de energia.

Os resultados referentes à deslignificação dos tratamentos evidenciam uma elevação do número kappa a medida que a proporção relativa de madeira de acácia na mistura é elevada. Estas diferenças podem perfeitamente ser atribuídas às diferenças estruturais observadas entre as duas espécies. Em conformidade com estudos realizados por FOELKEL (1982), embora a madeira de Acacia mearusii seja rica em vasos, possuindo inclusive maior volume proporcional que a madeira de Eucalyptus saligna, esses vasos são em sua grande maioria, geminados ou múltiplos, em comparação com os vasos isolados observados para a madeira de eucalipto. Isso significa que cada vaso para a madeira de Eucalyptus saligna possui uma maior zona de influên cia sobre as fibras vizinhas, quando comparado a um correspondente de madeira de Acacia mearusii. Outra conclusão do estudo refere-se à menor proporção de parênquima radial observada para a madeira de Acacia mearusii. Os raios medulares para a madeira de Acacia mearusii são maiores e com maior quantidade de células, sendo muito mais distantes uns dos outros.

Os mais elevados valores observados para viscosidade intrínseca a medida que a proporção de acácia na mistura é elevada, podem ser explica dos como devidos à preservação dos carboidratos pelo menor contato com a solução alcalina do licor de cozimento. Para a madeira de folhosas, o licor penetra preferencialmente pelos vasos, distribuindo-se ao longo da espessura dos cavacos pelos raios medulares. Como a madeira de Acacia meatra-sii possui uma distribuição irregular de vasos, associado a baixas propor ções de parênquima radial, a penetração do licor de cozimento é dificultada. Porcentagens mais elevadas de madeira de acácia na mistura acarretam a obtenção de valores mais elevados para rendimento bruto e depurado, o que

se traduz em uma vantagem considerável para a produção de fibras. Os resul tados obtidos estao concordantes com citados por MARTINS et alii (1983), e podem ser atribuídos aos teores mais elevados de pentosanas e holocelulose apresentados pela madeira de Acacía mearnsii. Elevações no rendimento depu rado da ordem de 5,88% foram observadas quando da utilização de composição de madeira 100% Acacia mearusii, em comparação com a composição 100% Euca*lyptus saligna.* Para o teor de rejeitos, observa-se uma tendência de eleva çao a medida que a proporção relativa de madeira de acácia na mistura é au mentada. Tal fato pode ser visualizado mesmo em tratamentos efetuados com cavacos obtidos manualmente, após a remoção de nos e madeira de reação. En tretanto, em termos industriais, os teores mais elevados de rejeitos se constituem em problema, pois através de um eficiente processo de depura ção e ajustes operacionais dos refinadores, estes rejeitos poderão ser comercializados como polpa "filler" para utilização em outros tipos de produ tos como por exemplo, capa de papelão, papel de embalagem, miolo de papelao corrugado, dentre outros.

Conforme o esperado, a solubilidade em solução de NaOH 5% a frio é significativamente afetada pela elevação da proporção relativa de madeira de acacia na mistura. Incrementos da ordem de 63,44% são observados quan do da utilização integral de madeira de Acacia mearnsii, quando comparados aos correspondentes de composição 100% Eucalyptus saligna, perfeitamente explicados pelo mais elevado teor de pentosanas apresentado pela especie. Estudos relacionando as correlações existentes entre a solubilidade polpa em solução de NaOH 5% a frio e o teor de pentosanas da mesma ja ram efetuados por diversos autores, destacando-se os citados por et alii (1977), os quais observaram uma correlação linear positiva entre os dois parâmetros analisados. Os mais baixos valores de alvura observados pa ra a polpa correspondente à utilização integral de madeira de Acacia meann sii, podem possivelmente ser explicados pelo teor mais elevado de extrativos apresentado pela madeira. Ainda com relação a esta propriedade, obser vou-se um provável efeito sinergístico pela presença dos dois tipos de fibras na estrutura da folha formada, pois os valores de alvura obtidos para as composições 25%A/75%S e 50%A/50%S, são superiores aos valores duais.

Relativamente à utilização das relações alvura/kappa e viscosida de/kappa, os tratamentos mais significativos devem apresentar os mais elevados valores para as relações alvura/kappa e viscosidade/kappa. Os dados obtidos permitem observar que para a relação alvura/kappa, a elevação da taxa relativa de madeira de acácia na mistura acarreta nítida tendência de decrescimo. Tal situação pode ser explicada pelos decrescimos na alvura e consequente elevação do número kappa, a medida que a proporção de madeira de acácia é aumentada. A relação viscosidade/kappa apresentou alterações pouco significativas, pois concomitantemente a uma elevação do número kappa, ocorria a elevação da viscosidade. De posse destas observações, os tra tamentos efetuados pela utilização integral de madeira de Eucalyptus saligna, e composição 25% Acacia measusii/75% Eucalyptus saligna forneceram resultados bastante significativos.

As determinações de teor de extrativos em alcool-benzeno 1:2 e solubilidade em solução de NaOH 1% a quente, efetuadas nas polpas, não apresentaram uma nitida tendência de variação. Já para o teor de lignina, os dados obtidos evidenciam uma tendência quando da elevação da taxa relativa de ma deira de acácia na mistura. Observa-se que a polpa referente à composição 100% Eucalyptus saligna apresentou teor mais elevado que a correspondente à composição 25% Acacia mearasii/75% Eucalyptus saligna, o que pode ser atribuído ao teor mais elevado de lignina apresentado pela espécie. Para os teores de holocelulose e cinzas, praticamente não foram notadas diferenças significativas entre os tratamentos efetuados, embora a madeira de Acacia mearasii apresente em sua constituição valores percentuais mais elevados.

Conforme o esperado, o teor de pentosanas foi significativamente afetado pela elevação da taxa relativa de madeira de Acacia mearusii na mistura, em concordância direta com o teor de soluveis em solução de NaOH 5% a frio.

Os dados apresentados no Quadro VII permitem observar que a madeira de Acacia mearnsii, pelo fato de apresentar valores mais elevados para densidade básica e rendimento em celulose, necessita menores volumes de ma deira que o Eucalyptus saligna para a produção de uma tonelada de celulose depurada. Considerando-se um caminhão transportando mesmos volumes de madeira, para a espécie Acacia mearnsii o correspondente volume sólido de madeira seria menor (menor relação m³sólido/m³estéreo), mas tendo em vistão os mais elevados valores para densidade básica, o correspondente peso seco é maior, o que conduz a vantagens econômicas relativas a aquisição e manuseio de matéria-prima.

A análise dos Quadros VIII e X nos revela que de uma maneira geral as propriedades físico-mecânicas que dependem mais especificamente das ligações inter-fibras são diminuídas com a elevação da porcentagem de madeira de Acacia meatrisió na mistura. Para as polpas não refinadas, observa-se uma tendência de diminuição da resistência à drenagem quando da elevação da porcentagem de madeira de acácia. A energía necessária para a obtenção do grau de refino correspondente a 25°SR apresenta uma relação direta com a elevação da porcentagem de madeira de acácia na mistura. Entretanto, para os níveis 40,55 e 65°SR, observa-se um ponto de máximo para a composição de madeira correspondente a 25% Acacia meatrisi/75% Eucalyptus saligna. Nestes níveis de refino mais elevados, a utilização integral de madeira de Acacia meatrisi necessita de menor energia que a correspondente de Eucalyptus saligna, embora tais considerações não são significativas nos níveis de probabilidade adotados.

A resistência à tração para todos os níveis de refino foi negati vamente afetada pela elevação da porcentagem de madeira de acácia na mistu ra. A principio poder-se-ia supor que a madeira de Acacia meannsii, fato de apresentar um maior teor de hemiceluloses, devesse apresentar valores mais elevados para esta propriedade, mas o que se observa é justamen te o oposto. Tal situação pode ser atribuída à possível natureza diferenciada das hemiceluloses componentes das duas espécies de bem como a características intrinsecas da fibra da madeira de Acacia meann sii. Quanto ao alongamento, embora não tenham sido detectadas diferenças es tatisticas significativas entre os tratamentos efetuados, para um mesmo composição grau de refino, valores mais elevados foram observados para a de madeira correspondente a 100% Eucalyptus saligna. Os mais baixos valores encontrados para a polpa proveniente de composição 100% Acacia meaunsii podem ser atribuídos à maior espessura da parede celular. Já para a re sistência ao estouro, estatisticamente não foram detectadas diferenças significativas para os graus de refino correspondentes a 25,55 e 65° SR. mais baixos valores obtidos quando da utilização de madeira de Acacia mearn sii podem ser atribuídos à maior espessura da parede celular, aos mais baixos valores para a relação comprimento de fibra/espessura parede, em concordância com os obtidos por FOELKEL et alii (1981).

A polpa relativa à composição de madeira 100% Eucalyptus saligna, em todos os níveis de refino foi caracterizada por apresentar valores de resistência ao rasgo mais elevados, explicados pela maior resistência in trinseca e melhor ligação das fibras. Para a polpa na forma não refinada, decrescimos da ordem de 42,34% são observados pela utilização integral de madeira de Acacia mearnsii quando comparada à correspondente de Eucalyptus saligna. Relativamente ao volume específico aparente para as polpas não refinadas, o mesmo está correlacionado diretamente com a elevação da porcentagem de madeira de Acacia mearnsii na mistura. Esta elevação do volume específico em termos industriais é altamente desejavel para a confecção de

papéis especiais, tipo absorventes ou base para saturação. Entretanto, mais significativo do que os altos valores observados na forma não refinada, é a manutenção dos mesmos apos o refino, objetivando a fabricação de papeis para impressão e escrita. Os mais elevados valores de volume aparente polpas de Acacia mearnsii podem ser explicados para as pelo maior teor de hemiceluloses apresentado pela espécie, pela maior rigidez das fibras e maior quantidade de vasos. Para os demais níveis de refino analisados, estatisticamente não foram observadas diferenças significativas entre os tratamentos efetuados. Ja para o nível 25°SR, foram obser vados decrescimos quando da elevação da porcentagem de madeira de meannsii na mistura, o que sugere que a diminuição de volume para a madeira de acácia é muito mais significativa do que para o eucalipto. Resultados similares foram obtidos por MARTINS et alii (1983). Possivelmente o pro prio refinador utilizado não seja adequado para a refinação de polpas maior volume específico, pois o mesmo achata as fibras e destroi os vasos, sem que ocorram ações de desfibrilação e corte em extensão apreciável.

Em se tratando de polpas não refinadas, a utilização de madeira de acácia conduz à formação de folhas mais porosas. Os valores mais elevados de resistência à passagem do ar observados para as polpas de acácia du rante o desenvolvimento do refino podem ser explicados como devidos à maior formação de finos ocasionada pelo teor mais elevado de hemiceluloses apresentado pela espécie. Conforme o esperado, elevações consideráveis foram observadas para o nível 65°SR. Para o coeficiente de dispersão de luz, não foram observadas diferenças significativas entre os tratamentos efetuados, em discordância com os obtidos por MARTINS et alii (1983), os quais encontraram interações significativas entre as espécies Eucalyptus saligna e Acacia meansii, sendo o Eucalyptus saligna caracterizado por apresentar va lores mais elevados em todos os níveis de refino. Situação análoga foi verificada para a alvura das polpas não branqueadas, sendo as polpas de Ácacia meansii caracterizadas por apresentar menores valores iniciais de alvura, o que não se traduz em problemas para o processo de branqueamento.

5. Conclusoes

Os estudos realizados permitiram observar que:

- A possibilidade de realização de cozimentos conjuntos de mistu ras de madeira de Eucalyptus saligna e Acacia mearnsii é plenamente viável. A madeira de Acacia mearnsii apresenta um comportamento similar as demais folhosas tradicionais, constituindo-se em uma matéria-prima de qualidade a dequada para a produção de polpa para papéis.
- De uma maneira geral, a madeira de Acacia mearnsii é caracterizada por apresentar teores mais elevados de extrativos, holocelulose e pentosanas, e menor teor de lignina. O menor teor de lignina não é um indice indicativo de que o processo de deslignificação requera menos alcali, diferenças essas que podem ser atribuídas à anatomia diferenciada das duas espécies.
- Devido ao elevado teor de hemiceluloses, não é aconselhável a utilização das polpas de Acacia mearnsii para a produção de derivados de celulose.
- A madeira de Acacia meaunsii, pelo fato de apresentar maiores valores para densidade básica e grau de compactação, necessita de menores consumos específicos para a produção de uma tonelada de celulose, o que se traduz em vantagens econômicas para o manuseio e aquisição de matéria-prima.
- A madeira de Eucalyptus saligna apresentou valores médios mais elevados para comprimento de fibra, largura e diâmetro do lúmen, bem como

para as dimensões dos elementos de vaso. Para a espécie Acacia mearnsii, fo ram observados valores médios mais elevados para espessura da parede celular.

- A espécie Eucalyptus saligna foi caracterizada por apresentar valores mais elevados para índice de enfeltramento, coeficiente de flexibilidade e relação comprimento/espessura, contribuindo para a elevação das propriedades de resistências físico-mecânicas.
- Os tratamentos efetuados permitiram observar uma elevação gradativa do rendimento bruto, depurado e teor de rejeitos, a medida que a proporção de madeira de Acacia mearnsii era aumentada. Em termos industriais, as desvantagens residem na dificuldade de impregnação dos cavacos, devendo -se proceder à utilização de picadores adequados que forneçam cavacos de pequena espessura.
- A viscosidade intrínseca e a solubilidade em NaOH 5% apresentam uma relação direta com a porcentagem de madeira de Acacia mearnsii na mistura. Embora o número kappa seja mais elevado e a alvura da polpa seja menor, estas diferenças não se constituirão em problemas quando do processo de branqueamento.
- A deslignificação de misturas de madeiras de Eucalyptus saligna e Acacia mearnsii necessita de maiores quantidades de álcali ativo, con duzindo a licores residuais com teores de matéria inorgânica mais elevados.
- De uma maneira geral, as propriedades de resistências físicomecânicas são diminuídas com o desenrolar do refino a medida que a proporção de madeira de Acacia mearnsii é aumentada. Relativamente à energia gas
 ta para a refinação, para o nível 25°SR, observa-se uma relação direta com
 a elevação da porcentagem de madeira de acacia. Entretanto, para os níveis
 40,55 e 65°SR, as polpas apresentaram pontos de máximo correspondentes à
 composição 25% Acacia mearnsii/75% Eucalyptus saligna.
- Para as polpas na forma não refinada, a elevação da porcentagem de madeira de Acacia mearnsii na mistura conduz a uma significativa elevação do volume específico, mas estes ganhos são perdidos já ao nível de refino 25°SR, indicando que o volume específico para as polpas de Acacia mearnsii diminui mais rapidamente que o correspondente de Eucalyptus saligna.

6. Literatura citada

- BUSNARDO, C.A., NUNES, C.O.C., MENOCHELLI, S., BORSSATTO, I., GONZAGA, J.V. & FOELKEL, C.E.B. Estudo comparativo da qualidade da madeira de três procedências de Eucalyptus saligna introduzidas na região de Guaí ba RS. Guaíba, RIOCELL, 1982. 25p. (Trabalho enviado à revista O Papel para publicação).
- FOELKEL, C.E.B., BRASIL, M.A.M. & BARRICHELO, L.E.G. Métodos para a de terminação da densidade básica de cavacos para coníferas e folhosas. IPEF, Piracicaba, (2/3): 65-74, 1971.
- GONZAGA, J.V., MENOCHELLI, S., RECH, B., BUSNARDO, C.A.B. & FOELKEL, C. E.B. Qualidade da madeira de Acacia mearnssi da região de Guaiba RS. Silvicultura, São Paulo, 8(28):813-820, jan./fev. 1983. (Ed.esp. Congresso Florestal Brasileiro, 4., Belo Horizonte, 1982).
- FOELKEL, C.E.B., MARENGO, J.V., MENDONÇA, C.A.A., BRAGA, C.A. & DILÉLIO, F.R.B. Acerca da solubilidade em alcalis de materiais celulósicos. I. Madeiras do eucalipto e da acacia negra e polpas comerciais de fi-

- bras curtas. In: CONGRESSO ANUAL DA ABCP, 13., São Paulo. Trabalhos técnicos ... São Paulo, ABCP, 1980.
- FOELKEL, C.E.B., BUSNARDO, C.A., ZVINAKEVICIUS, C. & BORSSATTO, M.F.B. Em busca da qualidade ideal da madeira do eucalipto para a produção de celulose. I. Eucalyptus tropicais. O Papel, São Paulo, 42: 53-6, fev. 1981.
- FOLEKEL, C.E.B. Avaliação comparativa da Acacia mearusii e Eucalyptus saligna quanto à qualidade de suas madeiras para celulose kraft. Guaí ba, RIOCELL, 1982. 20p. (Relatório técnico DIQUA, 67).
- MARENGO, J.V., BUTTURE, N. & BARTH, P.P.O. Relação entre S 5% e teor de pentosanas em polpa kraft. Guaíba, RIOCELL, 1977. (Relatório técnico 07/77).
- MARTINS, M.A.L., FOELKEL, C.E.B., GOMIDE, J.L. & VITAL, B.R. Estudo tec nológico da polpação kraft de Acacia mearnsii De Wild. In: CONGRESSO ANUAL DA ABCP, 16./ CONGRESSO LATINO AMERICANO DE CELULOSE E PAPEL, 3., São Paulo. Trabalhos técnicos ... São Paulo, ABCP, 1983.